
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Lemont, Illinois 60439

Asynchronously Parallel Optimization Solver for Finding
Multiple Minima1

Jeffrey Larson and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P5575-0316

March 2016

1This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under contract number DE-AC02-
06CH11357.

Asynchronously Parallel Optimization Solver for Finding Multiple
Minima

Jeffrey Larson Stefan M. Wild

March 31, 2016

Abstract

This paper proposes and analyzes an asynchronously parallel optimization algorithm for finding multiple, high-
quality minima of nonlinear optimization problems. Our multistart algorithm considers all previously evaluated points
when determining where to start or continue a local optimization run. Theoretical results show that, under certain as-
sumptions, the algorithm almost surely starts a finite number of local optimization runs and identifies, or has a single
local optimization run converging to, every minimum. The algorithm is applicable to general optimization settings,
but our numerical results focus on the case when derivatives are unavailable. In numerical tests, a PYTHON imple-
mentation of the algorithm is shown to yield good approximations of many minima (including a global minimum),
and this ability scales well with additional resources. Our implementation’s time to solution is shown also to scale
well even when the time to evaluate the function evaluation is highly variable.

1 Introduction
This paper addresses the problem of finding high-quality minima of

minimize
x∈Rn

f (x)

subject to: x ∈ D ,
(1)

when D is compact, concurrent evaluations of f are possible, and relatively little is known about f a priori. We
consider the case where the number of possible concurrent evaluations c is small, for example, when each evaluation
of f requires a significant amount of computational resources. In this paper, we propose and analyze the theoretical
and practical characteristics of an algorithm for finding high-quality (or all) minima to (1), even when derivatives of f
are unavailable.

Although an algorithm’s best-found local minimum provides an obvious approximation of the global minimizer
of (1), we differentiate the task of finding multiple high-quality minima from that of approximate global optimiza-
tion. Naturally, one can analyze the function values observed by any global optimization method in order to produce
estimates for nonglobal minima.

In many applications analyzing nonglobal minima has value. In physics, for example, the various minimizers of
a potential energy surface correspond to different ground and excited states; in chemistry, different dimer structures
can be found by examining minimizers from a geometry optimization problem [4]. Additionally, a problem may have
local minima that need to be compared by using criteria not known at the time of optimization or criteria that are less
quantifiable, such as the visual aesthetics of a given architectural design.

In this paper, we present an asynchronously parallel multistart algorithm for finding local minima for a nonlinear
optimization problem with a compact domain D . The algorithm samples the domain D and starts local optimization
runs from promising points. The sampling is necessary when one cannot make additional assumptions about the func-
tion f [28]. Because we view local optimization as presenting a significant sequential expense that cannot be mitigated
by increased concurrency, the algorithm seeks to minimize the number of local optimization runs performed. Ideally,

1

each minimum will be identified by a single local optimization run. We prove in Section 3 that, under certain assump-
tions, the algorithm almost surely locates all minima for (1) while starting only a finite number of local optimization
runs.

The development of the algorithm is motivated by two observations. We first observe that most local optimization
methods do not efficiently utilize concurrent function evaluations. That said, we want to use state-of-the-art (sequen-
tial) local optimization methods because many are designed to handle inexact derivative information, exploit problem
structure, and are robust to noise and stochasticity. The second observation is that many heuristics either do not scale
well in their time to solution when given additional resources or perform poorly with few resources. (Note that ran-
dom sampling usually performs poorly with few resources, but its performance scales perfectly with the number of
concurrent function evaluations.)

We show that an implementation of the proposed algorithm, an asynchronously parallel optimization solver for
finding multiple minima (APOSMM), is able to find high-quality minima for a large set of synthetic test problems.
APOSMM is written in PYTHON using the NUMPY and SCIPY libraries; the message-passing interface MPI is used
to coordinate the asynchronous evaluation of f by a collection of workers. A central manager tells the workers which
points to evaluate and, as evaluated points are returned from workers, advances local optimization runs by using a
collection of custodians. These custodians can run any local optimization method. The implementation is detailed in
Section 4.

The theoretical results assume nothing about the availability of ∇ f , and therefore the algorithm and the APOSMM
implementation are also applicable to problems where derivatives are unavailable. We present extensive numerical
tests in Section 5 in this derivative-free case and highlight the scalability of our implementation. We find that the
algorithm’s (and implementation’s) efficient use of previous function evaluations makes it especially well suited for
problems where ∇ f is unavailable.

Before reviewing the literature, we briefly establish the notation that will be used to describe the asynchronous
manager-worker algorithm. We follow the convention that finite sets are denoted by capital Roman letters while
(possibly) infinite sets are denoted by capital calligraphic letters. Let X∗ denote the set of all local minima of f within
D , and let x∗(i) be the minima in X∗ with the ith smallest function value (with ties broken as needed). QL will denote
the queue of local optimization points, and RS will represent a random stream of points (e.g., uniformly drawn) from
D . Let Hk = Sk

⋃
Lk be the set of all points evaluated by APOSMM from iteration 1 to k, consisting of points Sk

randomly sampled and points Lk generated by local optimization runs. Let Ak denote the set of points that are within
active local optimization runs and have been, or are currently being, evaluated at iteration k.

2 Background
Many methods exist for finding minima for general nonlinear optimization problems of the form (1). In this section,
we highlight methods that utilize concurrent evaluations of the objective function and methods that explicitly seek a
global minimum of (1). Methods of the former type can be restarted at different points in the domain D . Convergent
methods of the latter type must sufficiently explore the domain D [28].

Several derivative-free implementations of algorithms can utilize concurrent evaluations of the objective function.
PVTDIRECT [14, 15, 16] is a parallel implementation of the “dividing rectangles” algorithm DIRECT [19]; PVT-
DIRECT is designed to efficiently evaluate the same set of points independent of c, the number of concurrent function
evaluations. The asynchronous parallel pattern search algorithm [17] also evaluates candidate search directions con-
currently. Implementations of this algorithm include APPSPACK [11] and HOPSPACK [24]. In [1], an extension
of mesh-adaptive direct search (MADS) decomposes the problem (1) into a finite number of smaller-dimension sub-
problems, each of which is solved by a single MADS instance. These subproblem instances are independent, and thus
there is no synchronization among iterations of the concurrent instances of MADS. In a similar fashion, the authors
of [8] and [21] describe how pattern searches around several candidate solutions can be performed concurrently.

Olsson [23] studies approaches for utilizing concurrent evaluations of the objective for model-based, local, derivative-
free methods. Berghen [3] outlines parallel extensions of the CONDOR algorithm for constrained, model-based
optimization.

Many heuristic approaches also exist for solving (1). Two of the most popular heuristics are the particle swarm,
pattern search hybrid [29] and the covariance matrix adaptation evolution strategy CMA-ES [13]. In Section 5.4 we

2

compare our work with a version of CMA-ES that allows for concurrent evaluations.
Methods capable of locating multiple minima for problems such as (1) have been studied in the literature. For

example, the performance of a collection of implementations (including PVTDIRECT) on three relatively higher-
dimensional problems (n ∈ {56,57}) with many minima is studied in [7], and MADS is used in [10] to locate low-
melting compositions in a system containing many chemical components. GLODS [5] is a multistart implementation
that is designed to identify many minima. In Section 5.4 We compare our work with both GLODS and PVTDIRECT.

3 Algorithmic Details and Theory
The asynchronously parallel algorithm we present in this section is influenced by three previous algorithms: Multi-
Level Single Linkage (MLSL) [26, 27], Maximum Information from Previous Evaluations (MIPE) [30], and the Batch
Algorithm for Multiple Local Minima (BAMLM) [20]. Although MLSL is a multistart algorithm with theoretical
properties similar to those of our algorithm, it is lacking for a few reasons. MLSL does not consider points generated
during the local optimization runs when deciding where to start subsequent runs. Function values calculated during
past runs can provide useful information, especially when the objective function is expensive to evaluate. MLSL
implicitly assumes that local optimization runs must be completed before subsequent runs are started. MIPE addresses
the first limitation of MLSL, but it starts runs as needed without considering whether resources are available. The
BAMLM algorithm is a direct precursor to the algorithm proposed here, although BAMLM’s theoretical results are
based on the assumption that any local optimization run that is started will converge in a finite number of function
evaluations. In contrast to these algorithms, APOSMM utilizes all previously evaluated points when deciding where
to start subsequent local optimization runs, honors limitations on the number of concurrent evaluations that can occur,
and has theoretical results based on the assumption that local optimization runs converge only asymptotically to a
minimum.

We show that under certain assumptions on the function and the local optimization method, APOSMM will almost
surely start a finite number of local optimization runs and every local minima will either be identified or have a single
local optimization run converging to it.

3.1 Algorithmic description
Our parallel multistart algorithm is designed to find many local minima of the nonlinear optimization problem (1).
The compact domain D is explored by evaluating points randomly sampled from it, and then local optimization runs
are started at promising points. As function values are asynchronously returned from workers evaluating the objective
function, additional local optimization runs may be started, and active runs (i.e., runs that have not terminated) may
be merged. Points, either randomly sampled from D or from local optimization runs, are then given to workers to
evaluate.

The MLSL algorithm [26, 27] decides where to start local optimization runs in a similar fashion, but it considers
only points it has randomly sampled (Sk) when deciding where to start local optimization runs on iteration k. Our
algorithm uses all previously evaluated points by considering points in Sk and all points evaluated by past local opti-
mization runs, Lk. Points in Lk from active local optimization runs by iteration k are included in the set of active local
optimization points Ak ⊆ Lk.

Table 1 states the conditions that a previously evaluated point x̂ must satisfy before it is used as a starting point for
a local optimization run. In general, runs are started from points x̂ that are not within a distance rk of points with lower
function values, have not already started a run, and are not too close to the domain boundary. We define the threshold
rk > 0 on iteration k to be

rk =
1√
π

n

√
Γ
(

1+
n
2

)
vol(D)

5log |Sk|
Sk

. (2)

This is similar to the thresholds used by MLSL, MIPE, and BAMLM.
The APOSMM algorithm is stated in Algorithm 1. Note that Line 13 of Algorithm 1 requires knowledge of each

local optimization run’s candidate minima (i.e., the local optimization method’s estimate of the local minimum) for
each run. We consider a run’s starting point as the candidate minimum, even if that point came from Sk.

3

Table 1: Logical conditions to determine when to start a local optimization run after k evaluations.

(L1) x̂ ∈ Lk and ∄x ∈ Lk with [‖x̂− x‖ ≤ rk and f (x)< f (x̂)]
(S1) x̂ ∈ Sk and ∄x ∈ Lk with [‖x̂− x‖ ≤ rk and f (x)< f (x̂)]
(L2) x̂ ∈ Lk and ∄x ∈ Sk with [‖x̂− x‖ ≤ rk and f (x)< f (x̂)]
(S2) x̂ ∈ Sk and ∄x ∈ Sk with [‖x̂− x‖ ≤ rk and f (x)< f (x̂)]
(L3) x̂ ∈ Lk has not started a local optimization run
(S3) x̂ ∈ Sk has not started a local optimization run
(L4) x̂ ∈ Lk is at least a distance µ from the domain boundary
(S4) x̂ ∈ Sk is at least a distance µ from the domain boundary
(L5) x̂ ∈ Lk is at least a distance ν from any known local min
(S5) x̂ ∈ Sk is at least a distance ν from any known local min
(L6) x̂ ∈ Lk is not in an active local optimization run
(L7) x̂ ∈ Lk has not been ruled stationary
(L8) x̂ ∈ Lk is on an rk-descent path in Hk for some x ∈ Sk satisfying (S2)–(S5)

3.2 Convergence result
Before proving that APOSMM will almost surely identify all minima of (1), we state several assumptions.

Assumption 1. We assume that f is twice continuously differentiable on D , that (1) has no local minima on the
boundary of D , that there is a distance εx > 0 between all local minima of f in D , and that the domain D is compact.

The compactness of D and εx separation between minima imply that (1) has finitely many minima.
In addition to assumptions on (1), multistart algorithms must make assumptions about the local optimization

method. For example, the analysis of MLSL in [26, 27] assumes that if the local optimization method is started
from a point within a distance ν of a local minimizer, it will recognize (i.e., converge to) that minimizer. BAMLM’s
assumptions are more explicit about what is required of a local optimization method. Namely, BAMLM assumes that
once the local optimization method is within a distance ν of a local minimizer x∗ (for ν sufficiently small), the local
optimization method will identify x∗ as a minimizer in a finite number of function evaluations.

The assumptions made by MLSL and BAMLM on a local optimization method’s ability to recognize a local
minimum are not satisfied by many methods, for example, methods that converge asymptotically. MLSL brushes
away such concerns by assuming that any started local optimization run finds a local minima before proceeding. In
other words, MLSL is implicitly assuming that all started runs require a finite number of evaluations to identify a local
minimum.

In APOSMM, we make an assumption (Assumption 2(B)) that is satisfied by most local optimization solvers and
is thus more reasonable than the aforementioned assumptions BAMLM and MLSL make on the local optimization
method. For the theoretical results of APOSMM, we require the following assumptions on the local optimization
method.

Assumption 2. The local optimization method used in Algorithm 1 is

(A) strictly descent and converges to a local minimum and

(B) reports its candidate for the local minima every iteration.

APOSMM, BAMLM, and MLSL all assume the local optimization method is strictly descent for a path contained
in D . That is, starting from any point x ∈D , the method must generate a sequence of points xk′ , with xk′+1 = xk′ + pk′ ,
that converges to a local minimum x∗ such that f (xk′ + β1 pk′) ≤ f (xk′ + β2 pk′) for all k′ and all β1, β2 satisfying
0 ≤ β1 ≤ β2 ≤ 1. The assumption on strict descent can be relaxed [26, 27]; although the methods that we employ in
our numerical tests do not satisfy this assumption, we use it to guide our development of APOSMM.

We also make explicit assumptions about the two algorithmic tolerances.

4

Algorithm 1: Asynchronously parallel algorithm for finding multiple minima.
input: c workers; a local optimization method; tolerances µ ,ν > 0; and a random stream RS ⊂ D .

1 Initialize QL = X∗
0 = H0 = L0 = S0 = A0 = /0 and k = 0.

2 for w = {1, . . . ,c} do
3 Give w a point from RS at which to evaluate f .

4 while true do
5 (Possibly wait to) Receive from worker w that has evaluated its point, x̃ (taking from the

longest-waiting worker if multiple are waiting).
6 if x̃ ∈ Ak then
7 if Local optimization method reports x̃’s run is complete then
8 Add the minimizer from x̃’s run to X∗

k ; remove points from x̃’s run from Ak.
9 else

10 Query the local optimization method and add the subsequent point(s) (if not already in
Hk) from x̃’s run to QL.

11 Add x̃ to Lk or Sk, update Hk = Lk
⋃

Sk, and update rk using (2).
12 Start local optimization method at all points in Hk satisfying the conditions Table 1 for µ , ν ,

and rk. For each run, add the subsequent point(s) (if not already in Hk) to QL.
13 Kill runs (remove their points from Ak and any corresponding points from QL) with candidate

minima within 2ν of each other, keeping the run with the smallest function value (breaking ties as
needed).

14 Give w a point x′ at which to evaluate f , either from QL or RS. If x′ is from QL, add it to Ak.
15 Set X∗

k+1 = X∗
k , Hk+1 = Hk, Lk+1 = Lk, Sk+1 = Sk, and Ak+1 = Ak. Increment k.

Assumption 3. The parameters ν and µ are sufficiently small so that

(A) for any x∗ ∈ X∗, a local optimization run that has a candidate minimum within B(x∗,3ν) will converge only to
x∗, and

(B) ∂µD
⋂

B(x∗,ν) = /0 for all x∗ ∈ X∗ (where ∂µD is the set of points within a distance µ of the boundary of D).

When Assumption 1 holds, both of the conditions in Assumption 3 are easily satisfiable since ν and µ can be
chosen arbitrarily small.

We now show that Algorithm 1 starts finitely many local optimization runs.

Theorem 1. If f satisfies Assumption 1, the local optimization method satisfies Assumption 2, and ν and µ satisfy
Assumption 3, then if Algorithm 1 is run forever, there will almost surely be a finite number of local optimization runs
that have a point evaluated (other than the run’s starting point).

Proof. Let Yν be the set of points in D within a distance ν of an element of X∗.
Using the same logic as [20, Theorem 2] (i.e., that the Table 1 conditions for starting a run are more restrictive

than the original MLSL conditions, (S2)–(S4)), Algorithm 1 starts fewer runs than MLSL from points within D \Yν .
And MLSL almost surely starts finitely many runs from D \Yν .

Now consider runs started from points in Yν . In the worst case, a run will be started from a point x(i) within
B(x∗(i),ν) for all x∗(i) ∈ X∗. (Note that any such x(i) is not within µ of the boundary of D , by Assumption 3(B).)
Any subsequent point x̂ that could start a second local optimization run within a ball B(x∗(i),ν) already containing
a local optimization run will not progress. The reason is that the local optimization method is strictly descent (by
Assumption 2(A)) and therefore only one run from x̂ and x∗(i) will proceed.

Therefore, the number of runs maintained by Algorithm 1 is finite almost surely.

Since our algorithm may start more local optimization runs than the amount of possible concurrent evaluations,
we must ensure that no run is systematically ignored when workers are given points in Line 14 in Algorithm 1. We

5

therefore assume the following, in order to show that every minima will be identified or have a single local optimization
run converging to it.

Assumption 4. There almost surely exists K0 < ∞ such that for any K0 consecutive iterations of Algorithm 1, the
probability of taking a point from the sample stream RS and each of the local optimization runs in QL is bounded
away from zero.

For example, taking a point from RS and then cycling through the points in QL when giving points to available
workers to evaluate is a process that satisfies Assumption 4 because Theorem 1 ensures that the number of local
optimization runs started is almost surely finite (and therefore QL almost surely contains finitely many runs). Another
approach for giving points to idle workers is to uniformly choose a point in QL+{xs} where xs is the next point in RS.

We can now show that Algorithm 1 almost surely finds all minima of (1).

Theorem 2. Let Assumptions 1–3 hold and let the manner in which points are given to workers satisfy Assumption 4.
Then, if Algorithm 1 is run forever, each x∗ ∈ X∗ will almost surely be identified in a finite number of evaluations or
have a single local optimization run that is converging asymptotically to it.

Proof. Consider the first point x(i) drawn from B(x∗(i),ν) for any x∗(i) ∈ X∗. Such a point will be drawn almost surely

because Assumption 4 implies that infinitely many points from RS will be evaluated and vol
(
B(x∗(i),ν)

)
> 0 and

B(x∗(i),ν)⊂ D by Assumption 3(B). Since limk→∞ rk = 0, there is almost surely some iteration where a run could be
started from x(i), provided x∗(i) has not been identified or there does not exist another run with a candidate minimum
within 2ν of x(i). This other run is within 3ν of x∗(i), and by Assumption 3(A) will converge to x∗(i). If neither of these
cases holds, then a run will start from x(i) and converge to x∗(i).

Since there are a finite number of runs and Assumption 4 ensures that each run will almost surely progress, and
because progress guarantees convergence to local minimum by Assumption 2(A), the result is shown.

Therefore, by Theorem 1 and Theorem 2, Algorithm 1 almost surely finds all minima of (1) while starting only
finitely many local optimization runs.

3.3 Searching for the right rk

Forcing local optimization runs to start, even if no point satisfies some subset of conditions in Table 1, may be advan-
tageous. Doing so may seem counterintuitive since until now, we have argued that one wants to find minima while
starting as few runs as possible (i.e., Theorem 1). But more minima may be identified in a finite number of iterations
if additional runs are started. For example, if rk is relatively large near the end of a budget of iterations, the local op-
timization method (started from an appropriate point) will likely converge to a minimum at a faster rate than random
sampling will find points near some minimum. In the remainder of this section, we explore the possibility of starting
local optimization runs even when no point satisfies (the set of logical conditions in) Table 1.

If rk is (artificially) decreased too slowly, the cumulative effort of repeatedly testing the conditions in Table 1 can
be large; decreasing rk too quickly can produce redundant local optimization runs. Luckily, if no candidate points
are identified for a given value of rk, we show that one can efficiently find a r̃k < rk so that a run is started. Since
computational resources are limited, we desire the smallest decrease in rk to start a run for a given a history Hk and a
subset of conditions from Table 1.

First define Di, j =
∥∥xi − x j

∥∥ to be the pairwise distance matrix for all points in Hk. Let ~D be a sorted vector of the
entires of D, ~Dℓ ≤ ~Dℓ+1. We now show that a particular entry in ~D corresponds to the largest r̃k < rk for which at least
one point in Hk satisfies (the conditions in) Table 1.

Lemma 3. Let Hk and rk be given and suppose that xi,x j ∈Hk, with f (xi)> f (x j), are such that ~Dℓ =Di, j < rk ≤ ~Dℓ+1.
Further assume ~Dℓ+1 > ~Dℓ > ~Dℓ−1. If no point in Hk satisfies Table 1 for rk, but a point in Hk satisfies Table 1 for
rk − ε for some ε ∈ (0,~Dℓ+1 −~Dℓ), then the unique point satisfying Table 1 is xi.

6

0 1 3 6 10

4

5

6

7

8

x
f
(x
)

1-D example

Point in Sk

Point in Lk

Figure 1: Example where choosing the wrong rk may start a run from a less desirable point.

Proof. Given that decreasing rk to rk −ε produced a point satisfying Table 1, the condition that is newly satisfied must
be one of the conditions dependent on rk, namely, (S1), (S2), (L1), (L2), or (L8). It cannot be (L8), however, since
that condition cannot turn from false to true by decreasing rk.

Since ~Dℓ+1 > ~Dℓ > ~Dℓ−1, the only pair of points (x, x̂) that satisfy ‖x− x̂‖ ≤ rk but ‖x− x̂‖ > rk − ε is (xi,x j).
Since a point was returned for Table 1 with rk − ε , it must either be xi or x j. So either xi was preventing one of (L1),
(L2), (S1), (S2) from evaluating true for x j or vice versa. Because f (xi) > f (x j) by assumption, xi could not have
been the point in x ∈ Lk (resp. x ∈ Sk) that prevented (L1) or (L2) (resp. (S1) or (S2)) from evaluating true for x j. It
must have been x j preventing xi from being ruled a starting point for rk. Therefore, xi must be the point returned for
rk − ε .

Lemma 3 is useful when the number of points in Hk (and therefore entries in ~D) is small. But when many points
have been evaluated and we want the largest rk that will start a local optimization run, this may be very slow. Testing
the conditions in Table 1 for each distance in ~D requires significant computational effort. But aggressively decreasing
rk until a point is returned will not guarantee that that point is the best point for starting a local optimization run (at
least if condition (L8) is included).

For example, if rk = 3 in Fig. 1, the set of logical conditions in Table 1 would start a search at x = 6. But if we
increase rk to 4, then x = 10 is chosen as the starting point for the local optimization run. Since we want the largest
value for rk that starts a single local optimization run, rk = 4 is the best choice for this example.

Since it is not possible for any point to satisfy (S1)–(S5) and (L1)–(L7) for rk + ε but not for rk, the following
result holds.

Lemma 4. Let a history Hk, set of conditions Table 1, and value rk = ~Dℓ = Di, j for some points xi,x j ∈ Hk be given.
If a set of points Y ⊆ Hk satisfies (S1)–(S5) and (L1)–(L7) from Table 1 for rk, then points satisfying (S1)–(S5) and
(L1)–(L7) for rk + ε are a subset of Y .

With Lemma 3 and Lemma 4, we can bisect the list of pairwise distances (if we are keeping them) to find the first
distance such that a single point xi satisfies (S1)–(S5) and (L1)–(L7) (or until the set of points satisfying (S1)–(S5) and
(L1)–(L7) is appropriately sized).

Definition 5. Define a point xi ∈ Lk as rk-isolated if there does not exist another point within rk of xi.

Lemma 6. If there is a set of points Y satisfying all conditions in Table 1 for a given rk, then the only points that could
satisfy Table 1 for rk + ε are Y and rk-isolated local optimization points.

Proof. It is not possible for any point to satisfy (S1)–(S5) and (L1)–(L7) for rk + ε but not for rk. Therefore, a point
satisfying (L8) for a larger rk must either be in Y or be an rk-isolated local optimization point.

7

Searching through the entire vector ~D can still be computationally taxing. If we are concerned only with satisfying
(S1)–(S5) and (L1)–(L7), we need to keep only the index and distance to the nearest points in Sk and Lk for every
evaluated point. This must be updated whenever a new point is added to the history, but doing so is significantly
cheaper than maintaining D.

The effects of forcing runs in numerical experiments are presented in Section 5.8.

4 APOSMM Implementation
We now detail APOSMM, an implementation of Algorithm 1 that was developed in PYTHON using the message-
passing interface MPI (accessed via the MPI4PY package [6]). In this implementation, an APOSMM component
performs one of three distinct roles: acting as a worker, a custodian, or the manager.

4.1 APOSMM worker
The basic role of an APOSMM worker is to receive a point from the manager, evaluate the objective function at that
point, and return the computed objective value (and derivative(s), when available) to the manager. We assume that the
cost of evaluating the objective is significant enough to outweigh any manager-to-worker communication costs. An
APOSMM worker may consist of multiple MPI ranks, for example, if it is evaluating a parallel simulation whose
evaluation also utilizes MPI.

4.2 APOSMM custodians
APOSMM custodians are the caretakers of the local optimization runs: They are responsible for finding the next point
in a given run. Upon the manager’s request, a given custodian produces the next point in a given local optimization run.
The manner in which such points are generated depends on the local optimization method used by the custodian. If
the method’s state can be efficiently saved and restarted, then the manager must give this information to the custodian.
The custodian can then initialize the local optimization method to its previous state and generate the next point in the
run. Such state information may not be readily available for many local optimization methods. A simpler, though more
computationally intensive approach, is to ensure that the manager provides the custodian with all previously evaluated
points from the run for which it must generate the next point. The custodian can then start the method from scratch
and sequentially give already-computed function values to the method. When the list of values has been exhausted,
the custodian can return the next-requested point to the manager. Any local optimization method can be linked with an
APOSMM custodian in this fashion, provided the method generates points deterministically. This approach is used
by the current APOSMM implementation to generate points for methods in PETSC [2] and NLOPT [18].

4.3 APOSMM manager
The APOSMM manager is responsible for maintaining the history of previously evaluated points and a queue of
points requested by the custodians. The manager also determines which points need to be evaluated by the APOSMM
workers and informs APOSMM custodians regarding which local optimization runs need to be advanced as function
evaluations are returned from the workers. After the initialization phase, the manager receives data from any worker
or custodian that attempts to contact it.

If a custodian returns a local optimization point, the manager checks the history Hk to determine whether that point
has already been evaluated. If it has, a custodian is restarted with this additional information. If the point has not been
evaluated, the point is added to the queue of local optimization points QL. A custodian can also inform the manager
that its local optimization run has terminated, in which case the manager performs a clean-up operation, marking all
points from the run as inactive and marking the run’s minimum.

If a worker contacts the manager with an evaluated point, its function value is stored in the history Hk. If the
point is part of a local optimization run, a custodian is instructed to generate the next point on this run. When each
function value is returned, the manager determines whether a new local optimization run needs to be started (e.g., if
rk is now sufficiently small so a previously evaluated point should start a run, or if the point that was just evaluated

8

Algorithm 2: (A)POSMM manager logic

1 Set k = 0, async ∈ {true, false}, and fevalmax.
2 Initialize history Hk, local optimization queue QL, and random stream RS.
3 Give all workers points to evaluate.
4 while true do
5 MPI.recv(MPI.ANY SOURCE)
6 if Received from custodian then
7 Check Hk and restart custodian if needed.
8 Add new point to QL.

9 if Received from worker then
10 Increment k and update Hk.
11 if k ≥ fevalmax then break;
12 Possibly start a custodian working on the next point.
13 Add new points satisfying (S1)–(S5) and (L1)–(L7) from Table 1 to QL.

14 if async=true OR all workers/custodians are idle then
15 Give point(s) from QL or RS to available worker(s).

has a promising function value). Idle workers are then given points to evaluate; this happens immediately unless
synchronization is desired, in which case all custodians and workers must be idle before workers are given points. The
pseudocode for the APOSMM manager is provided in Algorithm 2.

For edification, we diagram the movement of information within APOSMM in Fig. 2. In this example, we start as
the objective function value at x̄ (a point previously requested by some custodian using the local optimization method
A) is received by the manager and stored in the history. Because the evaluation was from a local optimization run, a
custodian is informed that the subsequent point from x̄’s run is needed. The custodian produces x′, the next point in
the local optimization run as determined by the local optimization method A. The custodian relays this information to
the manager, which checks the history to determine whether x′ has already been evaluated. If it has been previously
evaluated, a custodian would be restarted with the function value at x′. In this example, x′ has not been evaluated, and
it is added to the queue of local optimization points QL. When the manager decides that x′ should be evaluated, this
point is given to a worker.

Note what does not happen within APOSMM. Workers are indistinguishable: they are not tied to any region of
the domain or particular local optimization run. There is no one-to-one mapping of active local optimization runs to
APOSMM custodians. In fact, such a mapping would be undesirable because it would require knowing a priori how
many (active) runs the manager will start. Initializing APOSMM with excessively many custodians can waste limited
resources as custodians for all incomplete local optimization runs idly await a function evaluation from a worker.

4.4 APOSMM vs POSMM
Two instances of APOSMM run with the same random stream may produce different results, for example, when
custodians and workers report to the manager in a different order. At the cost of decreased computational efficiency,
we can enforce some level of determinism by ensuring that all workers and custodians are idle (i.e., the manager has
function values from all workers and has points from any custodian advancing a local optimization run) before giving
points to any worker in Line 14 of Algorithm 2. We refer to this modification as POSMM in order to highlight the
attempt to remove asynchronicity; POSMM is not deterministic since the manager does not, for example, query all
workers in order. As is shown in Section 5, the sequences of points generated by APOSMM and POSMM for a given
random stream RS are essentially the same for all problems considered. For shorthand, we often use (A)POSMM to
represent the collective “APOSMM and POSMM.”

9

History

Check
history

Queue

Decide

Random
stream

MANAGERWORKERS CUSTODIANS

...

...

...

...

...

A

A

A

x′

f (x̄)

x′f (x̄)

x′

f (x̄)

x′

Figure 2: Diagram of APOSMM following the function value of a local optimization point from a worker to the
manager, which gives that information to a custodian in order to advance the point’s local optimization run. Once a
subsequent point has been produced by the local optimization method, it is added to the manager’s queue (provided
the new point has not been evaluated).

4.5 (L8) test
The majority of the work performed by the manager occurs when updating the history after receiving a function value
from a worker and when deciding whether (and where) a custodian must start a local optimization run. This effort can
be greatly reduced if condition (L8) is not included in the conditions checked by the manager when deciding where to
start a local optimization run (as is default in (A)POSMM).

Condition (L8) is difficult to check in practice since it requires the pairwise distances between points in Lk and
all other points. Repeatedly recalculating these distances is onerous; storing, for example, 30,000 double-precision,
pairwise distances requires over 7 GB of memory.

We consider condition (L8) to be more of a theoretical convenience than a condition that significantly affects an
implementation’s performance. For nearly all problems tested, inclusion of the test did not affect performance of the
implementation in any way: Seldom does a point x̂ ∈ Lk satisfy (S1)–(S5) and (L1)–(L7), but there is no rk descent
path from some point in Sk to x̂. Not including (L8) in the test of conditions also makes it possible to efficiently search
for the largest value of rk that will start a run as, was shown in Section 3.3.

5 Numerical Results
We now analyze the numerical performance of various algorithmic implementations—including (A)POSMM, our
implementation of Algorithm 1—on a set of problems of the form (1) where D is a bound-constrained domain. As
noted previously, our algorithm and implementation assume nothing about the availability of ∇ f . Yet, we find that
(A)POSMM’s efficient use of previous function evaluations makes it especially well suited for problems where ∇ f
is unavailable. We therefore compare (A)POSMM exclusively on problems where the derivative is unavailable to the
implementation.

10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 1

 2

 3

 4

 5
 6

 7
 8

 9

 10 −0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

Figure 3: First ten-minima GKLS problem instance in R2; minima are numbered in order of function value.

5.1 Synthetic test problems
Because we wish to measure the implementations’ abilities to find multiple local minima, we use the GKLS problem
generator [9] to construct the set of benchmark problems. These problems have known minima; this removes ambi-
guity about X∗ and allows us to accurately measure how an implementation approximates the local minima of each
problem after each function evaluation. (Of course, none of the implementations require knowledge of X∗.) Each
GKLS problem is constructed by augmenting a convex quadratic that with polynomials, thereby introducing local
minima at (known) random locations, while producing a continuously differentiable objective.

One must slightly modify the default GKLS problem generator so that each implementation has a reasonable
opportunity to find the global and nonglobal minima. The default generator produces problems where the distance r∗

from the quadratic vertex to the global minimum satisfies

0 < r∗ <
1
2

min
i
{ui − li} ,

where u and l are upper and lower bounds on the problem domain, respectively; it then sets r∗
2 as an upper bound

on the global minimum’s radius of attraction. Since we use the unit cube for all problem domains, the volume of
such a basin in R7 (for example) is π7/2

Γ(n
2+1)

1
4

7 ≈ 0.03% of the domain. While such a basin is a tiny portion of the

domain in R7, it is over 20% of the domain in R2 (provided the basin is contained in D , which is not guaranteed). We
believe the differences in the percentage of the domain that is included in the basin of attraction is too large for the
dimensions considered here. We therefore modify the upper bound on r∗ to be

√
n

2 for problems on the n-dimensional
unit cube. This increase means that we must ensure that the global minimum is placed within the domain; this is
easy to check as the problems are generated. We generate ten such problems each with ten minima in each of the
dimensions n = {2, . . . ,7} to obtain 60 problems in total.

An example of the first ten-minima GKLS problem instance in R2 is shown in Fig. 3. Note that there is no lower
bound on the size of the basin of attraction for any local minima. Hence, some minima may be difficult to locate,
especially in higher dimensions.

5.2 Data profiles
For a set of implementations M that are run on each problem in a set P, we measure performance using data profiles
[22]. Data profiles are an absolute metric: They do not change depending on the implementations in M. If an

11

implementation m ∈ M “solves” problem p ∈ P in tp,m function evaluations, the data profile of m is

dm(α) =

∣∣∣
{

p ∈ P : tp,m
np+1 ≤ α

}∣∣∣
|P| , α ≥ 0, (3)

where np is the dimension of problem p. In words, dm(α) is the fraction of problems m solves in a budget of α(np+1)
function evaluations. Note that when P consists of problems of varying dimensions, the metric (3) considers the
difficulty of a problem to grow linearly with the problem dimension.

5.3 Measuring performance
The essential component underlying any data profile is how the number of function evaluations required to solve a
problem, tp,m, is calculated. We propose two tests to measure when an implementation has solved a given problem to
a given level τ ≥ 0.

The first convergence test measures whether function values have been found close to the global minimal value.
We consider an implementation to find a global minimum at a level τ ∈ (0,1) after k evaluations if there is a point
x ∈ Hk such that

f (x)− fG ≤ (1− τ)(f (xc)− fG) , (4)

where xc is the centroid of D and fG is the value of f at global minima. If an implementation satisfies (4) for a problem
p and a given τ , the implementation found a fraction (1−τ) of the best possible decrease from the centroid on problem
p.

Defining a test that measures how well an implementation finds a set of j local minima is more difficult. One
cannot monitor only the function values observed by an implementation since observations in function space do not
provide enough information about the implementation’s progress in D toward minima. We therefore measure the
minimum distance from each of the j best local minima to the points evaluated by an implementation.

It can be deceiving to fix a tolerance τ > 0 (independent of the problem dimension) and consider an implementation
to have satisfied a convergence test when it has evaluated a point within a distance τ of local minima. The reason is
that it is more difficult to find a point within a τ ball of a local minimizer in higher dimensions: a ball in Rn with radius
0.1 around a local minimizer has a volume that is approximately 3% of the volume of a unit cube domain when n = 2,
but 0.00004% of the volume of the unit cube when n = 7. We believe that drawing a point uniformly from the domain
should have a constant probability (independent of dimension) of satisfying a test of being sufficiently close to a local
minimizer.

The distance metric that we proposed in [20] satisfies this requirement. Namely, we set

ρn(τ) =
n

√
τ vol(D)Γ(n

2 +1)
πn/2 , (5)

where τ ∈ (0,1) is some fraction of the domain. As mentioned before, this distance ensures that points drawn uniformly
from D are as likely to be within a distance of a minimum in Rn independent of n. Note that the definition of ρn(τ)
depends on the domain D and therefore depends on how the domain is scaled.

Defining the j best minima is easy when the minima have distinct function values. If duplicate function values
exist, however, care must be taken to credit an implementation for locating any of the minima with the same function
value as one of the j best. We consider an implementation to find the j best minima after k evaluations if

∣∣∣
{

x∗(1), . . . ,x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥x− x∗(i)

∥∥∥≤ ρn(τ)
}∣∣∣= j−1

and∣∣∣
{

x∗(j), . . . ,x
∗
(j̄)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥x− x∗(i)
∥∥≤ ρn(τ)

}∣∣∣≥ j− j+1.
(6)

For example, if j = 2 and the problem has only three minima, each with the same function value, an implementation
is considered to solve that problem at a level τ after evaluating points within ρn(τ) of any two of the three minima.

We consider the two convergence criteria (4) and (6) as providing complementary information about an implemen-
tation’s performance. Note that there is no connection between the convergence tests (4) and (6) for a given value of τ .
For example, as we will see, the latter convergence test is much more sensitive to perturbations in τ than is the former.

12

5.4 Performance of APOSMM and other implementations
We now compare the performances of (A)POSMM, CMA-ES, PVTDIRECT, and GLODS using the convergence
tests (4) and (6). We include DIRECT, a serial implementation, in the set of benchmarked implementations to show
the idealized performance of its class of implementations. RANDOM sampling, drawing points uniformly from the
domain, is also included for a baseline comparison. For consistency, the results of RANDOM sampling (and all imple-
mentations) will be presented as if it were a serial implementation, even though its performance scales perfectly with
increased concurrency; this allows us to comment on how large the increase in concurrency would need to be before
RANDOM sampling would be competitive with other implementations.

Conditions (S1)–(S5) and (L1)–(L7) from Table 1 are tested for determining when a point x̂ should start a local
optimization run within (A)POSMM, provided at least 10n random points have been evaluated. BOBYQA [25] is
used to advance all local optimization runs within (A)POSMM; its initial trust region radius is set to

min{rk,‖u− x0‖∞ ,‖x0 − l‖∞} ,

where [l,u] is the (unit-cube) domain D . The parameter ν is set to 0 so there is nothing preventing runs from starting
close to previously identified minima. The parameter µ is set to 10−4, in part to prevent tiny initial trust-region radii
and in part because the NLOPT implementation of BOBYQA moves starting points that are close to the boundary.
Although we vary the number of workers, all runs are performed with one custodian (and one manager). These are the
default settings for (A)POSMM.

When points are added to the (A)POSMM queue of local optimization points, QL, they are given a random priority
from [0,1]. Idle workers are given the highest-priority points from QL or are given points from RS if QL is empty.

Many of the presented data profiles do not include APOSMM because its performance is nearly identically to
that of POSMM’s when considering only the sequence of points generated by the implementations. Naturally, the
wall-clock time between the two is considerable when there is variance in the function evaluation times, as we will
show.

The default settings for the (serial) version of CMA-ES (Version 3.61.b, [12]) that we considered often stop
CMA-ES before its budget of evaluations is exhausted. We therefore set the Restarts option to a large value so
the budget is exhausted. One can increase the number of function evaluations performed in each CMA-ES restart
by tightening its (many) default stopping criteria. We avoid doing so because the defaults are appropriately tight (it
converges accurately to some minima) and because tightening these tolerances only increases the effort expended in
further refining (approximately) identified minima. CMA-ES also has a EvalParallelBoolean flag that allows the
implementation to query the objective with multiple points. This is not compatible with our setting because the number
of points requested by CMA-ES is regularly larger (or significantly smaller) than the specified concurrency. Also, one
assumes that the serial version is not less efficient in its use of function evaluations than any parallel implementation
is, and (for example) grouping requested points in batches with size equal to the available concurrency would only
degrade its performance.

The implementation PVTDIRECT generates the same iterates independent of the number of workers given.
Therefore, we compare only performance (but not timing) using the case where three MPI ranks are given to PVT-
DIRECT; rank 0 evaluates the centroid and then coordinates the evaluations performed by the two remaining ranks.
Since PVTDIRECT does not return a history of points evaluated, we monitor its progress including print commands
in the objective function that write the x being evaluated, f (x), the MPI rank performing the evaluation, and the start
and end times of the evaluation. PVTDIRECT was benchmarked by using similar steps in [14, 15].

For GLODS, we use the default parameters.
All implementations were run on each problem with a budget of 2000(np + 1) evaluations, where np is the di-

mension of problem p. The stochastic implementations—(A)POSMM, CMA-ES, GLODS, and RANDOM—were
each run with ten different random seeds on each of the 60 GKLS problems to generate 600 runs. (A)POSMM and
RANDOM sampling have the same random stream for each problem instance. The performance of the determinis-
tic DIRECT and PVTDIRECT implementations was duplicated ten times for each problem to ensure a consistent
number of instances.

We observe how effective the benchmarked implementations find 99% and 99.999% of the possible decrease from
the centroid to the global minimum in Fig. 4. Note that all implementations are being presented on a serial scale; the
two concurrent points evaluated by PVTDIRECT and 14 concurrent points evaluated by POSMM are serialized in

13

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMA-ES
Direct
GLODS

(a) τ = 10−2

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(b) τ = 10−5

Figure 4: Data profiles using convergence test (4) on 600 GKLS problem instances.

the order in which they were evaluated. For many of the higher-dimension problems in the benchmark set, CMA-ES
has difficulty finding the global minimum. For example, for 100 runs on the 7-dimensional problems, all CMA-ES
restarts locate the minimum of the convex quadratic underlying each GKLS problem but never the problem’s global
minimum. This behavior is possibly due to CMA-ES falsely believing the polynomial augmentations to be noise
and instead repeatedly refining the accuracy of a global quadratic model. Nevertheless, CMA-ES does find the global
minima for all two-dimensional problems. Finding points close to the global minimum with uniform random sampling
(unsurprisingly) performs poorly, as can be seen by RANDOM’s data profile. DIRECT, as expected, outperforms
PVTDIRECT in this metric and scale. Note that POSMM with two workers would be better than the 14-worker
implementation, because the sequence of points produced by 14 workers frequently includes more sample points in
the initial iterations than does the 2-worker sequence.

In Fig. 5, we compare the implementations’ abilities to find multiple local minima for the benchmark problems.
We observe that an implementation’s performance as measured using the convergence criterion (6) is sensitive to the
level τ . For example, RANDOM sampling’s relative ability to find the three best minima goes from first at a level
τ = 10−2 in Fig. 5(c) to near-last when τ = 10−4 in Fig. 5(d). We note that POSMM is consistently effective at
finding the j best minima at a level τ for many (j,τ) pairs. We later show that POSMM with 2 workers generates a
sequence of points that performs nearly identical to POSMM with 14 workers in terms of the convergence criterion
(6).

We also observe that the performance of RANDOM sampling with respect to the convergence criterion (4) degrades
quickly as the problem dimension increases, suggesting that POSMM will greatly outperform RANDOM sampling in
this metric for larger problem dimensions. RANDOM’s poor performance remains largely unchanged across problem
dimensions with respect to the convergence criterion (6), but this is due to the definition of ρn in (5).

5.5 POSMM and RANDOM

The performance of POSMM and RANDOM, especially in Fig. 5(c) and Fig. 5(b) may suggest that the success of
POSMM is being driven exclusively by its random sampling. We can see from the poor performance of RANDOM in
Fig. 5(b) and Fig. 5(d) that this is not exclusively the case.

Nevertheless, we are interested in determining values for j and τ when RANDOM sampling is competitive with
POSMM’s ability to locate the j best minima at a level τ . To this end, we compute the data profiles (3) for POSMM
and RANDOM for a range of τ values and for j ∈ {1, . . . ,10} (because all the problems have ten minima). We then
compute the area under each data profile, allowing us to plot contour plots for each (j,τ) pair in Fig. 6(a) and Fig. 6(b).
We also plot the difference between RANDOM and POSMM’s percentages of the maximum possible area under the

14

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMA-ES
Direct
GLODS

(a) j = 2, τ = 10−5

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(b) j = 7, τ = 10−3

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(c) j = 3, τ = 10−2

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(d) j = 3, τ = 10−4

Figure 5: Data profiles using convergence test (6) on 600 GKLS problem instances.

data profile (for each j and τ) in Fig. 6(c).
Note that the maximum percentage difference in the areas under each data profile is less than 4%, which occurs

when j = 10 and τ = 10−2 and the area under RANDOM’s data profile is 1872 and POSMM’s is 1799. (The largest
possible value is 2000.) In general, we see that POSMM is significantly better than RANDOM sampling for most
values of j and τ tested. The best-case scenario for RANDOM is greatly outweighed by the large range of (j,τ) pairs
where RANDOM has a data profile with less than 5% of the possible area.

5.6 Scalability of APOSMM and POSMM
We now study the scalability (with respect to the number of workers) of the number of function evaluations needed
for APOSMM to find (at a level τ) a global minimum or the j best minima. We compare APOSMM and POSMM
with different levels of concurrency on the 60 GKLS problems, each repeated ten times. In order to test the possible
effects asynchronous function evaluations may have on (A)POSMM, a significant pause (of length drawn uniformly
from [0,0.2] seconds) is included in each function evaluation. RANDOM sampling is included as a baseline.

In Fig. 7, we measure how effectively (in terms of the number of function evaluations) (A)POSMM approximates
minima as the available concurrency changes. Again, there is no scaling by the number of workers on the horizontal

15

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

0

0

0

τ

#
m
in
im

a

0

200

400

600

800

1000

1200

1400

1600

1800

(a) Area under POSMM

0

0

0

τ

#
m
in
im

a

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

0

200

400

600

800

1000

1200

1400

1600

1800

(b) Area under RANDOM
0

0

0

τ

#
m
in
im

a

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

(c) Percent difference

Figure 6: Contour plots for the areas under the data profile for POSMM and RANDOM for a range of τ and j values.
Integral values less than than 100 (5% of the maximum possible area) are shaded. Also shown is the percentage
difference between the integral of the data profile for RANDOM and the data profile for POSMM, with solid lines at
multiples of 10% and dashed lines at -5% and 5%. The line where the percent difference is zero is plotted on all three
figures.

axis; only the sequence of points evaluated by each implementation is considered. Figure 7(a) shows that RANDOM
sampling is effective at finding 90% of the possible decrease from the domain centroid to the global minimum on 50%
of the problems in 1460(np +1) function evaluations. Because RANDOM scales perfectly with increased concurrency,
the concurrency would have to be over 140 before RANDOM sampling is competitive with the 20(np + 1) function
evaluations required for (A)POSMM to solve 50% of the problems at this accuracy. That RANDOM sampling solves
only one problem to a level τ = 10−5 within 2000(np +1) evaluations does not bode well for its ability to accurately
approximate a global minimum with reasonable levels of concurrency.

Note that the number of evaluations required to achieve a certain performance level is nearly identical between
APOSMM and POSMM instances with the same number of workers. That is, not forcing synchronization on Line 14
of Algorithm 2 does not greatly affect—at the studied levels of concurrency—the order of points generated by our

16

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
APOSMM(2)
APOSMM(8)
APOSMM(14)
POSMM(2)
POSMM(8)
POSMM(14)

(a) Convergence test (4), τ = 10−1

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(b) Convergence test (4), τ = 10−5

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(c) Convergence test (6), j = 2, τ = 10−5

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(d) Convergence test (6), j = 3, τ = 10−4

Figure 7: Data profiles for APOSMM/POSMM with different levels of concurrency on 600 GKLS problem instances.

implementation. Increasing the number of workers, and therefore the number of concurrent evaluations, does increase
the number of evaluations required to reach a certain performance level, especially in Fig. 7(b). Dividing the num-
ber of function valuations by the concurrency shows that increasing resources does improve APOSMM’s ability to
approximate a global minimum, but this improvement does not scale perfectly with the additional resources given.

This is not the case with APOSMM’s ability to find many minima, as shown in Fig. 7(c) and Fig. 7(d). Barely
any difference existsbetween the progress toward the j best minima for the sequence of points evaluated by the im-
plementation as the number of workers increases. Such results would be expected if the progress of APOSMM were
driven by random sampling alone (since the performance of RANDOM scales perfectly). But we see from RANDOM’s
poor performance in these figures that this is not the case. The results show that APOSMM’s ability to find the j best
minima scales well with additional resources, at least when the number of minima is relatively similar to the level of
concurrency, and that this ability is not due to random sampling alone.

It may seem surprising that increasing the number of workers has relatively little effect on performance of the
implementation toward the j best minima, as suggested by Fig. 7(c). By plotting the same data on a log scale in Fig. 8,
we see that this is largely true, except during the initial iterations.

17

1 2 4 8 16 32 64 128 256 512 1024 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
APOSMM(2)
APOSMM(8)
APOSMM(14)
POSMM(2)
POSMM(8)
POSMM(14)

Figure 8: Data profiles for APOSMM/POSMM with different levels of concurrency using convergence test (6) with
j = 2 minima at a level τ = 10−5 for 600 GKLS problem instances. (Fig. 7(c) with log scaling.)

In Fig. 9, we also plot a histogram of the fraction of local optimization points from each of the 600 POSMM runs
on GKLS problems (while accounting for the problem dimension). We see that increasing the number of workers
increases the fraction of points that are from local optimization run for only the small-dimension problems.

5.7 Timing scalability
We have shown that APOSMM performs similarly to POSMM in terms of the number of function evaluations re-
quired to approximate the j best minima (including j = 1); see Fig. 7. This holds even if the cost of evaluating the
objective function has high variance. But of course, the cost of synchronization in Line 14 of Algorithm 2 may incur

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

Fraction

C
ou

n
t

n=2
n=3
n=4
n=5
n=6
n=7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

Fraction

C
ou

n
t

Figure 9: Histograms of the fraction of local optimization points from each POSMM run on the 600 GKLS problems
with 2 workers (left) and 14 workers (right).

18

2 8 14

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
POSMM
Median
Ideal

2 8 14

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
pVTDirect
Median
Ideal

Figure 10: Time to exhaust 2000(np+1) evaluations (log-log scale) for APOSMM vs. POSMM (left) and APOSMM
vs. PVTDIRECT (right) on 600 GKLS problem instances when the individual function evaluations include a pause
drawn uniformly from [0,0.2] seconds. The top whisker is an implementation’s worst run time; the bottom whisker is
its best run time.

significant costs in terms of wall clock time; we now analyze this effect.
Care was taken to ensure that all runs were as equivalent as possible with respect to their timing. Each run

occurred on a dedicated 16-CPU node running a minimal operating system, and all function evaluations occurred
within RAM that was unique to each node. In order to remove concern about node-to-node communication, the number
of concurrent evaluations was limited to 14 (allowing one CPU each for (A)POSMM’s manager and custodian).
Evaluations were performed in the same manner by each implementation: points of interest were written to RAM,
the GKLS executable was called, and function values were read by the implementation. PVTDIRECT’s FORTRAN
or (A)POSMM’s PYTHON may be more or less efficient at such tasks, so we do not draw conclusions between
PVTDIRECT and (A)POSMM for a given number of workers. We are more concerned with the implementations’
performances as the concurrency changes.

In Fig. 10 we show the wall-clock time required for APOSMM, POSMM, and PVTDIRECT to exhaust their
budget of 2000(np + 1) evaluations on the 600 GKLS instances. Since the function evaluation time is highly vari-
able, POSMM’s synchronization before sending points to workers results in poor run time scaling as the number of
workers increases. APOSMM and PVTDIRECT do not incur such synchronization costs, and their median run times
scale well with increased workers. APOSMM’s worst-case wall-clock run time does not appear to scale as well as
PVTDIRECT’s run time does, although its best-case run time appears to scale slightly better than ideal scaling.

Monitoring an implementation’s ability to exhaust a budget of function evaluations (as we do in Fig. 10) does not
characterize its performance in terms of wall clock time. We present results combining an implementation’s run time
with its performance in different data profiles. Define Cp,m(k) to be the cumulative run time from the beginning of the
first function evaluation to the end of the evaluation k. Then the average cumulative run time for a set of problems P is

Bm(k) =
1
|P| ∑

p∈P
Cp,m(k). (7)

We use this quantity to analyze how an implementation’s ability (in terms of wall-clock time) to find a global minimum
(or the j best minima) to some level τ changes as the concurrency increases.

We attempt to remove all problem-dimension effects by fixing the problem dimension in a given figure. We plot
data profiles for a given (j,τ) combination within the convergence test (6). For each implementation m, we define φm
to be the smallest α satisfying dm(α) ≥ κ . Then we plot Bm(φm(np + 1)) for a range of workers and κ next to the
corresponding data profile. Thus, such plots show the average cumulative run time required for each implementation

19

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

APOSMM(2)
APOSMM(8)
APOSMM(14)
pVTDirect(2)
pVTDirect(8)
pVTDirect(14)

(a) Data profile, n = 2, j = 3, τ = 10−2

2 8 14

10
0

10
1

Workers

R
u
n
ti
m
e

APOSMM
pVTDirect
κ = 80%
κ = 60%
κ = 40%
Ideal

(b) n = 2

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

APOSMM(2)
APOSMM(8)
APOSMM(14)
pVTDirect(2)
pVTDirect(8)
pVTDirect(14)

(c) Data profile, n = 7, j = 3, τ = 10−2

2 8 14

10
1

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
pVTDirect
κ = 80%
κ = 60%
κ = 40%
Ideal

(d) n = 7

Figure 11: Data profiles using convergence test (6) and scaling plots for 100 n = 2 and 100 n = 7 GKLS problem
instances.

to have a data profile value larger than κ . Results for n = 2 and n = 7 are shown in Fig. 11. Note that the relatively
conservative values for κ and τ are required since PVTDIRECT does not even find the three best minima at a level
τ = 10−2 for more than 80% of the 7-dimensional problems. Of course, PVTDIRECT is not designed to identify
multiple minima. The effect of PVTDIRECT generating nearly the same sequence of points independent of the
available concurrency can be seen in the nearly identical data profiles for differing numbers of workers in Fig. 11(a)
and Fig. 11(c).

We see in Fig. 11(b) that increasing the concurrency available does not proportionally decrease the amount of wall
time required by PVTDIRECT to solve 50% of the n = 2 problems. For larger dimensions (Fig. 11(d)) PVTDIRECT
is able to utilize the increased concurrency more efficiently. As the dimension goes from two to seven, PVTDIRECT
requires relatively more wall time to achieve a level of performance than does APOSMM.

In Fig. 12 we compare time-scaling results for only APOSMM and POSMM for more difficult levels of τ . The
results are a natural combination of the near-perfect scaling (with respect to time) shown in Fig. 10 and the near-
perfect scaling (with respect to finding the three best minima at a level τ = 10−4) shown in Fig. 7(d). We consider the
scalability of APOSMM in terms of run time and performance for relatively tight levels of τ , as shown in Fig. 12(b)

20

200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

APOSMM(2)
APOSMM(8)
APOSMM(14)
POSMM(2)
POSMM(8)
POSMM(14)

(a) Data profile, n = 2, j = 3, τ = 10−3

2 8 14

10
0

10
1

10
2

Workers

R
u
n
ti
m
e

APOSMM
POSMM
κ = 90%
κ = 70%
κ = 50%
Ideal

(b) n = 2

200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

APOSMM(2)
APOSMM(8)
APOSMM(14)
POSMM(2)
POSMM(8)
POSMM(14)

(c) Data profile, n = 7, j = 3, τ = 10−3

2 8 14

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
POSMM
κ = 90%
κ = 70%
κ = 50%
Ideal

(d) n = 7

Figure 12: Data profiles using convergence test (6) and scaling plots for 100 n = 2 and 100 n = 7 GKLS problem
instances.

and Fig. 12(d), in order to highlight (A)POSMM’s ability to accurately find many minima.

5.8 Forcing runs
We present preliminary data showing the effects of forcing a different number of runs within POSMM. We require
that the number of active runs always to be at least 1, 2, 4, or 8 and compare that with the default behavior that places
no requirement on the number of active runs. If a lower bound of s runs is desired in the queue QL in POSMM but
there are not s points that have not started runs or are not in active local optimization runs, all possible starting points
will be used to start runs and any idle workers will be given points to sample. These points will start runs on the next
iteration, provided some existing run was not terminated in the interim (although we note that we have not observed
this in practice).

We observe negligible benefits in the ability to approximate the global minimum (convergence test (4)), but we do
observe slight improvements in finding moderate numbers of minima to tighter τ levels, as shown in Fig. 13. Naturally,
this can be overdone if too many runs are forced; forcing eight runs appears to be too many runs for the benchmark

21

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
Force 0
Force 1
Force 2
Force 4
Force 8

(a) Convergence test (4), τ = 10−5

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(b) Convergence test (6), j = 6, τ = 10−5

Figure 13: Data profiles for 600 GKLS problem instances when forcing a certain number of active runs within
POSMM with 8 workers.

problems considered if we are trying to find the six best minima to a level τ = 10−5, see Fig. 13(b).
The fact that the relative improvement is quite low suggests that the rate at which we are decreasing rk is not

limiting POSMM’s ability to find minima. Rather, it appears that POSMM has not sampled a point within some of
the tiny basins of some minima defined by the GKLS problem generator.

Forcing runs does not have a large effect on POSMM’s performance with respect to (4), as shown in Fig. 13(a),
and the performance holds independent of problem dimension. With respect to (6), forcing runs appears to help more
in smaller dimensions, as is shown in Fig. 14. This result strongly suggests that the rate at which rk is decreasing is
not excessively slow and therefore should not prevent minima from being identified in higher dimensions.

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
Force 0
Force 1
Force 2
Force 4
Force 8

(a) Convergence test (6), n = 2, j = 3, τ = 10−5

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

(b) Convergence test (6), n = 7, j = 3, τ = 10−5

Figure 14: Data profiles for 100 n = 2 and 100 n = 7 GKLS problem instances when forcing a certain number of
active runs within POSMM with 8 workers.

22

6 Discussion
We have presented an algorithm for identifying multiple high-quality minima of nonlinear optimization problems.
Our multistart algorithm considers all previously evaluated points when deciding where to start or continue local
optimization runs. Runs are started from points that do not have a better point within a distance rk.

As more randomly drawn points are evaluated, rk is decreased. The rate at which rk is decreased is essential to the
algorithm’s theoretical properties and practical performance. If rk decreases too quickly, many redundant runs will be
started; if it decreases too slowly, runs that would identify undiscovered minima will not be started. If rk is decreased
at the rate prescribed by (2), we show that under certain assumptions, the algorithm will start only a finite number of
local optimization runs but still identify all minima.

Moreover, decreasing rk by the rate prescribed by (2), (A)POSMM performs well in practice for the benchmark
problems considered. It is able to find many minima (including a global minimum) quickly, and forcing runs provides
only marginal improvement. This result suggests that rk is neither decreasing neither too quickly nor too slowly.

We observe that APOSMM’s ability to find many minima scales well as the number of concurrent evaluations
increases. The asynchronous nature of APOSMM ensures that its performance is not degraded when the function
evaluation time has high variance.

We are especially interested in finding or developing the best local optimization method for a multistart algorithm
such as APOSMM. In practice, it would be useful to have a local optimization method that returns multiple points of
interest that help identify a minimum more quickly. We also desire a method that provides a relative value for requested
points, thereby helping the APOSMM manager determine the priority in which these points should be allocated to
workers. A method that can deterministically be restarted quickly and utilize information from other runs’ function
evaluations is also a desired property.

Acknowledgements
This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract
DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided by the Laboratory Computing
Resource Center at Argonne National Laboratory. We thank Gail Pieper for her useful language editing.

References
[1] Audet, C., Dennis, Jr., J.E., Le Digabel, S.: Parallel space decomposition of the mesh adaptive direct search

algorithm. SIAM Journal on Optimization 19(3), 1150–1170 (2008). DOI 10.1137/070707518

[2] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp,
W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc Web
page (2016). URL http://www.mcs.anl.gov/petsc

[3] Berghen, F.V.: CONDOR: a constrained, non-linear, derivative-free parallel optimizer for continuous, high
computing load, noisy objective functions. Ph.D. thesis, Université Libre de Bruxelles (2004). URL
http://www.applied-mathematics.net/optimization/thesis_optimization.pdf

[4] Cave, R.J., Burke, K., Castner, Jr., E.W.: Theoretical investigation of the ground and excited states of Coumarin
151 and Coumarin 120. Journal of Physical Chemistry A 106(40), 9294–9305 (2002). DOI 10.1021/jp026071x

[5] Custódio, A.L., Madeira, J.F.A.: GLODS: Global and local optimization using direct search. Journal of Global
Optimization 62(1), 1–28 (2015). DOI 10.1007/s10898-014-0224-9

[6] Dalcı́n, L., Paz, R., Storti, M., D’Elı́a, J.: MPI for Python: Performance improvements and MPI-2 extensions.
Journal of Parallel and Distributed Computing 68(5), 655–662 (2008). DOI 10.1016/j.jpdc.2007.09.005

23

[7] Easterling, D.R., Watson, L.T., Madigan, M.L., Castle, B.S., Trosset, M.W.: Parallel deterministic and stochastic
global minimization of functions with very many minima. Computational Optimization and Applications 57(2),
469–492 (2014). DOI 10.1007/s10589-013-9592-1

[8] Garcı́a-Palomares, U.M., Rodrı́guez, J.F.: New sequential and parallel derivative-free algorithms for uncon-
strained minimization. SIAM Journal on Optimization 13(1), 79–96 (2002). DOI 10.1137/S1052623400370606

[9] Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: Software for generation of classes of test
functions with known local and global minima for global optimization. ACM Transactions on Mathematical
Software 29(4), 469–480 (2003). DOI 10.1145/962437.962444

[10] Gheribi, A.E., Robelin, C., Le Digabel, S., Audet, C., Pelton, A.D.: Calculating all local minima on liquidus
surfaces using the FactSage software and databases and the Mesh Adaptive Direct Search algorithm. The Journal
of Chemical Thermodynamics 43(9), 1323–1330 (2011). DOI 10.1016/j.jct.2011.03.021

[11] Gray, G.A., Kolda, T.G.: Algorithm 856: APPSPACK 4.0: Asynchronous parallel pattern search for derivative-
free optimization. ACM Transactions on Mathematical Software 32(3), 485–507 (2006). DOI 10.1145/1163641.
1163647

[12] Hansen, N.: CMA-ES. URL https://www.lri.fr/˜hansen/cmaes_inmatlab.html#matlab

[13] Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11(1), 1–18 (2003). DOI
10.1162/106365603321828970

[14] He, J., Verstak, A., Sosonkina, M., Watson, L.: Performance modeling and analysis of a massively parallel
DIRECT–Part 2. International Journal of High Performance Computing Applications 23(1), 29–41 (2009). DOI
10.1177/1094342008098463

[15] He, J., Verstak, A., Watson, L., Sosonkina, M.: Performance modeling and analysis of a massively parallel
DIRECT–Part 1. International Journal of High Performance Computing Applications 23(1), 14–28 (2009). DOI
10.1177/1094342008098462

[16] He, J., Verstak, A., Watson, L.T., Sosonkina, M.: Design and implementation of a massively parallel ver-
sion of DIRECT. Computational Optimization and Applications 40(2), 217–245 (2007). DOI 10.1007/
s10589-007-9092-2

[17] Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for nonlinear optimization. SIAM
Journal on Scientific Computing 23(1), 134–156 (2001). DOI 10.1137/S1064827599365823

[18] Johnson, S.G.: The NLopt nonlinear-optimization package (2016). URL
http://ab-initio.mit.edu/nlopt

[19] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. Journal
of Optimization Theory and Applications 79(1), 157–181 (1993). DOI 10.1007/BF00941892

[20] Larson, J., Wild, S.M.: A batch, derivative-free algorithm for finding multiple local minima. Optimization and
Engineering 17(1), 205–228 (2016). DOI 10.1007/s11081-015-9289-7

[21] Liuzzi, G., Truemper, K.: Parallelized hybrid optimization methods for nonsmooth prob-
lems using NOMAD and linesearch. Tech. rep., University of Texas at Dallas. URL
http://www.utdallas.edu/˜klaus/Wpapers/hybrid.pdf

[22] Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM Journal on Optimization
20(1), 172–191 (2009). DOI 10.1137/080724083

24

[23] Olsson, P.M.: Methods for network optimization and parallel derivative-
free optimization. Ph.D. thesis, Linköping University (2014). URL
http://liu.diva-portal.org/smash/get/diva2:695431/FULLTEXT02.pdf

[24] Plantenga, T.D.: HOPSPACK 3.0 user manual. Tech. Rep. October, Sandia National Laboratories, Albuquerque,
NM and Livermore, CA (2009)

[25] Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical
report DAMTP 2009/NA06, Department of Applied Mathematics and Theoretical Physics, University of Cam-
bridge (2009)

[26] Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods, part I: Clustering methods. Math-
ematical Programming 39(1), 27–56 (1987). DOI 10.1007/BF02592070

[27] Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods, part II: Multi level methods.
Mathematical Programming 39(1), 57–78 (1987). DOI 10.1007/BF02592071

[28] Törn, A., Zilinskas, A.: Global optimization. Springer-Verlag, New York (1989). DOI 10.1007/3-540-50871-6

[29] Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained global optimization.
Journal of Global Optimization 39(2), 197–219 (2007). DOI 10.1007/s10898-007-9133-5

[30] Wild, S.M.: Derivative-free optimization algorithms for computationally expensive functions. Ph.D. thesis,
Cornell University (2009). URL http://ecommons.cornell.edu/handle/1813/11248

25

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

